Отговори и кратки решения

1	2	3	4	5	6	7	8	9	100	11	102	133	144	15
В	Б	Б	Б	Γ	Б	Α	В	В	Γ	Γ	Б	В	Γ	Γ
				$x \in [-2;1] \cup \{2\}$					4 ³	$x \in (2,5;3) \cup (3;4)$			4	$a \in (0;4)$
														(,)

1 зад. Повдигаме на 3-та и получаваме $20-14\sqrt{2}$

2 зад. x=0 y=2 z=1следователно x<z<y

3 зад.
$$tg\alpha = 5$$
, $tg(180^{\circ} - \alpha) = -tg\alpha = -5$

4 зад.
$$2^{\frac{1}{2} + \frac{1}{2} - \frac{3}{4}} = \sqrt[4]{2}$$

5 зад. След разлагането $(x-2)^2(x-1)(x+2) \le 0$ и определяне знаците, получаваме $x \in [-2;1] \cup \{2\}$

6 зад. От
$$tg\alpha$$
 получаваме $\sin\alpha = \frac{8}{17}, \cos\alpha = -\frac{15}{17}, a\cos(180^{\circ} - \alpha) = -\cos\alpha = \frac{15}{17}$

7 зад. Получаваме
$$\cos \gamma = -\frac{1}{2}$$
 , т.е. $\gamma = 120^{0}$

8 зад. Параболата е изцяло под абсцисната ос, т.е. a<0 и c<0 9 зад. Определяне последователно височината и диагонала на трапеца h =6 см и d=10 см. От синусовата теорема намираме $R = 5\sqrt{2}$ см

10 зад. Последователно използваме определението за логаритъм и намираме N=64

$$-x^2+6x-8>0$$

и получаваме
$$x \in (2,5;3) \cup (3;4)$$

$$|2x-5\neq 1|$$

 $|-x^2+6x-8>0$ 11. Решаваме системата: |2x-5>0 и получаваме $x\in(2,5;3)\cup(3;4)$ $|2x-5\ne 1$ 12 зад. От $\angle A+\angle B=120^\circ$ следва, че $\angle AOB=120^\circ$, а от синусова теорема $R=\frac{10\sqrt{3}}{3}$

13 зад. След полагане $t=x^2-4x$ получаваме функцията $g(t)=t^2+10t+16$, където $t\geq -4$

Тъй като върха на параболата има абсциса $t_0 = -5$, функцията е растяща в този интервал и НМС е при t = -4 и g(-4) = -8

14 зад. След коренуване (виж зад.1) се получава $2 + \sqrt{2} + 2 - \sqrt{2} = 4$

15 зад. Графиката на функцията вляво се състои от части от две параболи $f(x) = \begin{cases} \frac{4x-x^2, x \le 4}{x^2-4x, x \ge 4} \end{cases}$. Графиката на правата y = kще пресича графиката на f(x) в три точки, когато $a \in (0;4)$