БЪ ТГАРСКА АКАДЕМИЯ НА НАУКИТЕ ИНСТИТУТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Двадесет и втори турнир Черноризец Храбър 1 поември 2013 г.

Инструкция (11-12 клас)

1. Време за работа 90 минути. Не се разрсшава използване на калкулатори и друга изчислителна техника.
2. Към всяка задача са дадени 5 възможности за оттовор. В бланката за отговори срсщу помсра на всяка задача папишете верния според вас, като използвате една от буквите: A, Б, В, Г, Д.
3. Попълвайте бланката ясно и четливо с ГЛАВНИ ПЕЧАТНИ букви. Двусмислено попълнен или неясен отговор могат да се считат за грешен отговор Ако не можете да намерите отговор, може да не попълвате съответното поле, т.е да оставите полето срещу номера на задачата празно.

Забележка. Чертежите ббикновено не са точни, а само изобразяват описвапата в условието конфигурация.

Дӓват се следните точки:

- За верен отговор на всяка задача с номер от 1 до 10 включително - по 5 точки.
- За верен отговор на всяка задача с номер от 11 до 20 включително - по 7 точки.
- За верен отговор на всяка задача с номер от 21 до 30 включително -- по 9 точки.
- За непопълнен отговор на задача - по 3 точки.
- За грешен отговор - 0 точки.

[^0]
Двадссст и втори турнир „Чсрноризсц Храбър"

Състезателна тема за 11-12 клас

1. $\lg 2013^{2}-2 \lg 2013=$
A) 0
Б) 1
B) 10
Г) 100 Д) 1000
2. Кое от числата
A) 2013
Б) 2014
B) 2015
Г) 2016
Д) 2017

е член на аритметичната прогресия с първи член 3 и разлика $671 ?$
3. Ако за всяко реално x имаме $f(x-1)=x^{2}-3 x+1$, то:
A) $f(x)=x^{2}-3 x-1$.
Б) $f(x)=x^{2}-x-1$
B) $f(x)=x^{2}+x+1$
Г) $f(x)=x^{2} \oplus 3 x+1$
Д) пикое от тези
4. Колко корена има уравнението $\sin ^{2} x+2 \cos x-2=0$ в иитсрвала $[0 ; \pi]$?
A) 0
Б) 1
B) 2
Д) 4
5. Колко са трицифрените триъгълни числа? (Триъгълното число t_{n} изразява броя на точките, подредени в равностранен триъгълник със страна $n ; t_{1}=1, t_{n}=t_{n-1}+n$.)
A) 29
Б) 31
B) 34
Г) 37 Д) никое от тези
6. Ако $f(x)=\sin ^{2} x+2 \cos x, x \in[0 ; \pi]$, то кои са наймалката и най-голямата стойност на $f(x)$?
A) $f_{\text {min }}=-2, f_{\max }=2$
Б) $f_{\text {min }}=-1, f_{\max }=1$
B) $f_{\text {min }}=0, f_{\text {max }}=2$
Г) $f_{\text {min }}=-2, f_{\max }=1$
Д) никое от тези
7. Кое с най-голямото двуцифрено число, косто нс може да се представи като сбор на две прости числа?
A) 99
Б) 98
B) 97
Г) 96
Д) 95
8. По случаен начин се избира трицифрено число. Каква е вероятността всички цифри на избраното число да са различни прости числа?
A) $\frac{1}{15}$
Б) $\frac{8}{333}$
B) $\frac{4}{165}$
Г) $\frac{2}{75}$
Д) $\frac{1}{2}$
9. За страните на изпъкналия четириъг"ълник $A B C D$ са в сила отношенията $A B: B C: C D: D A=1: 2: 4: 3$. Окръжностите, вписани в $\triangle A B D$ и $\triangle C B D$, допират $B D$ в точкитте M и N. На колко е равно отношението $M N: B D$?
A) $\frac{1}{6}$
Б) $\frac{1}{5}$
B) $\frac{1}{4}$
Г) $\frac{1}{3}$
Д) никое от тези
10. Точката P е от страната $A B$ на $\triangle A B C$, а M и N са медицентровете на $\triangle A P C$ и $\triangle B P C$. Каква част ог лицето на $\triangle A B C$ е лицето на $\triangle P N M$?
A) $\frac{1}{9}$
Б) $\frac{1}{6}$
B) $\frac{3}{8}$
(C) $\frac{5}{18}$
Д) никое от тези

11. На колко е равно лицето на фигурата, състояща се от точките с координати $(x ; y)$, за които $1 \leq|x|+|y| \leq 2$?
A) 1
Б) 3
B) 4
Г) 6
Д) 7
12. На колко е равен коефициентът пред x^{-3} след разкриване на скобите и извършване на привсдсние в израза $\left(x^{2}+\frac{1}{x}\right)^{6}(1+x)^{3} ?$
A) 1
Б) 3
B) 6
Г) 7
Д) никое от тези
13. Кои са стойностите на парамст ьра m, за които репенията на неравенството $4(m x)^{2} \leq 4 x^{4}+1$ са $x \in(-\infty ;+\infty)$?
A) $m \in(-\infty ; 0]$
Б) $m \in(-2 ; 2)$
B) $m \in[0 ;+\infty)$
Г) $m \in[-1 ; 1] \quad$ Д) никое от тези
14. На колко е равен остатъкът от делението на 2013^{2013} на 13 ?
A) 5
Б) 8
B) 1
Г) 2
Д) 11
15. Двата диагонала на делтоид имат дължина 4 и две от страните му са $\sqrt{5}$. На колко е равна всяка от другите две страни?
A) $\sqrt{10}$
Б) $\sqrt{8}$
B) $\sqrt{14}$
Г) $\sqrt{12}$
Д) никое от тези
16. Kое е най-малкото число, което, записано в бройна система с основа 4 , има сбор от цифрйе 2013_{4} ?
A) $2^{90}-1$
Б) $3^{45}-1$
B) $4^{503}-1$ Г) 2013^{4}
Д) никое от тези
17. Върху 3 от страните на правилен шестоъгълник вьннно за шестоъгълника са построени равностранни гриъгълници с центрове N, P, Q, както е показано на чертежа. Каква част от лицето на шестоъгълника е лицето на $\triangle N P Q$?
A) $\frac{4}{9}$
Б) $\frac{3}{4}$
B) $\frac{2}{3}$
Г) $\frac{9}{16}$
Д) никое от тези
18. Всяка от три окръжности с радиус 1 се допира външно до другите две. На колко е равен радиусът на четвърта окръжност, която се допира вънншно до трите еднакви окръжности?
A) $\frac{\sqrt{3}-1}{2}$
Б) $\frac{2 \sqrt{3}-3}{3}$
B) $\frac{2-\sqrt{3}}{2}$
г) $\frac{2-\sqrt{3}}{3}$
19. На балл отиват 10 двойки абигуриенти. След бала всеки міладсж изпратил дсвойка до дома ѝ. Каква с вероятността за точно пет от младежите да е вярно: всеки е изпратил девойката, с която е отишъл на бала?
A) по-голяма от 0,5
Б) между 0,1 и 0,5
B) между 0,01 и 0,05
Г) между 0,001 и 0,005
Д) под 0,001
20. Даден е правоъгълник $A B C D$ с $A B=10$ и $B C=5$. X е променлива точка от страната $C D$. Каква е най-малката възможна стойност на израза $y=3 A X^{2}+B X^{2}$?
A) 120
Б) 175
B) 144
Г) 150
Д) никос от тези
21. Колко са рсшенията на систсмала $\left\lvert\, \begin{aligned} & y=\sin x \\ & x^{2}+y^{2}=2 y\end{aligned}\right.$?
A) 0
B) 1
B) 2
Г) 3
Д) никøе от тези
22. Колко от числіата $1,2,3,2013$ имат кратни от вида 888... 88 ?
A) 1208
Б) 1410
B) 1511
Г) 1612
Д) никос от тези
23. Колко са реалните рсшения на систсмата $\left\lvert\, \begin{aligned} & x^{2}-y z=-2 \\ & y+z=2 \sqrt{2}\end{aligned}\right.$?
A) 0
Б) 1
B) 2
Г) 4
Д) безбройно много
24. В следните равенства, написани на езика Солресол, думите означават цифри:

редодо + ремими + солдо + рефафа $=$ ресиси
ремими \times рефафа $=$ ресиси
Намерете сбора ремими + рефафа + ресиси.
A) 10
b) 11
B), 12
Г) 13
Д) 14
25. Даден е правилен петоъгълник $A B C D E$. Ђглополовящата на $\Varangle B E A$ пресича $A C$ в точката Q. На колко е равно $C Q: A Q$?
A) $2+\sqrt{5}$
Б) $\frac{1+\sqrt{5}}{2}$
B) $1+\sqrt{5}$
Г) 5 Д) никое от тези

26. Колко са трицифрсните числа $\overline{a b c}$, за които $a b c=2^{4} 3^{3}$?
A) 12
Б) 9
B) 8
Г) 6
Д) 3
27. Първоначално керемидите на един достатъчно голям навес са сухи. От капчук започват да падат последователно водни капки върху една най-горна керемида. Всяка капка, търкулвайки се надолу, спира на първата керемида без капка, до която достигне. Ако пъък стигне до керемида, на която вече
 има капка, тя се слива с нея и така получената по-голяма капка се търкулва на по-долната керемида (тя от своя страна спира, ако керемидата ебез капка или, ако на керемидата има капка, се слива с нея, атака получената още по-голяма капка се търкулва на следващата по-надолу керемида) и т.н. На колко керемиди ще има капки след като падне и се изтъркаля 2013-ата капка?
A) 11
Б) 10
B) 9
Г) $8 \quad$ Д) никое от тези
28. Петоъгълното число P_{n} е броят на точките, които могат да се подредят в квадрат $n \times n$, над който с оформен триъгълник с основа горната страна на квадрата. На фигурата е илюстрирано P_{4}. На колко е равно $\lim _{n \rightarrow \infty} \frac{P_{n}}{n^{2}}$?
A) $\frac{5}{4}$
Б) $\frac{4}{3}$
B) 2
Г) $\frac{6}{5}$
Д) никое от тези

29. Колко рсда щс отпечата процсдурата

Кула(n: цяло; ot: буква, prez: буква, do: буква)
ако $n>0$ то
\{Кула(n-1, ot, do, prez);
ОтпечатайНовРед('премести диск от', ot, 'на', do);
Кула(n-1, prez, ot, do)\}
при извикването на $\mathrm{Kyла(10}, \mathrm{A}, \mathrm{В}, \mathrm{B)} \mathrm{?}$
A) под 10
Б) между 10 и 100
B) между 101 и 1000
Г) между 1001 и 10000 Д) над 10000
30. Околните стен̣и на единичния куб в правоъгълна координатна система са огледални. Лъч излиза от точката $(0,5 ; 0 ; 0)$ и се отразява за първи път в точката $(1 ; 0,5 ; 0,25)$. В коя точка ще бъде лъчът по време на четвъртата си „среща" с куба? („излизапето" не се брои.)
A) $(0,5 ; 1 ; 1)$
Б) $(0,5 ; 0 ; 1)$
B) $(0,5 ; 0,0,75)$
Г) $(0,5 ; 1 ; 0)$
Д) пикое от тези

[^0]: Задачите са предложени от Борислав Лазаров, Боянка Савова, Ивайло Кортезов, Иван Тонов и Йордан Табов.
 Темата е съставена от Њорнслав Лазаров.

