Кратки решения на задачите

Задача 9.1. Да се реши системата $\left\lvert\, \begin{aligned} & x y+2 y z=5 \\ & y z+2 z x=3 \\ & z x+2 x y=7\end{aligned}\right.$.
Решение. Събираме почленно трите уравнения на системата и получаваме $x y+y z+$ $z x=5$. Оттук и от първото уравнение намираме $z x-y z=0$, т.е. $z=0$ или $x=y$. Първата възможност отпада поради второто уравнение, а при $x=y$ системата добива вида $\left\lvert\, \begin{aligned} x^{2}+2 x z & =5 \\ x z & =1\end{aligned}\right.$ (третото уравнение е следствие от първите две). Следователно $x= \pm \sqrt{3}=y$ и $z= \pm \frac{\sqrt{3}}{3}$, т.е. решенията са $\left(\sqrt{3}, \sqrt{3}, \frac{\sqrt{3}}{3}\right)$ п $\left(-\sqrt{3},-\sqrt{3},-\frac{\sqrt{3}}{3}\right)$.
Задача 9.2. Даден е успоредник $A B C D$, в който $A B=4 A D$ и $\Varangle B C D=60^{\circ}$. Точките E и F са средите съответно на страните $A B$ и $C D$ и точка P е симетрична на F относно правата $A B$. Да се докаже, че:
а) $P A=P C$;
б) $\Varangle C A B+\Varangle C E B=30^{\circ}$.

Решение. а) Да означим с C_{1} точката, симетрична на C относно правата $A B$ и с S - средата на $P C_{1}$. Тогава лесно се вижда, че $\triangle B C_{1} S$ е равностранен, точките C, B и S лежат на една права и $S C=2 B C$.

Сега за $\triangle P S C$ и $\triangle P E A$ имаме $P E=C_{1} B=B C=P S, E A=2 A D=2 B C=S C$ и $\Varangle P E A=120^{\circ}=\Varangle P S C$. Оттук $\triangle P S C \cong \triangle P E A$ и $P A=P C$.

б) От а) следва, че $\Varangle A P C=120^{\circ}$, защото ъгълът между $P A$ и $P C$ е равен на ъгъла между $P E$ и $P S$. Накрая

$$
\Varangle C A B+\Varangle C E B=\Varangle C A B+\Varangle C_{1} E B=\Varangle C A B+\Varangle P A B=\Varangle C A P=30^{\circ}
$$

Задача 9.3. В израза $A=1 * 2 * 3 * \cdots * n$ всяка от звездичките е заменена със знак за събиране или умножение и в резултат е получено съставно число, чийто най-малък прост делител е означен с p. Нека p_{n} е най-голямото просто число p, което може да се получи по този начин.
a) Да се намери p_{7}.
б) Да се докаже, че $p_{8}=61$.

Решение. Да отбележим, че, тъй като $a+b<a b$ при различни $a, b>1$, най-голямото число, което може да се получи по описания начин, не надминава $1+n!$. Оттук следва, че $p_{n} \leq \sqrt{1+n!}$.
а) Тъй като $1+7!=5041=71^{2}$, т.е. $p_{7} \leq 71$, и 71 е просто число, получаваме $p_{7}=71$.
б) Имаме $1+8!=40321=61.661$, откъдето следва, че $p_{8} \geq 61$. Ще докажем, че няма как да получим по-големи стойности за p_{8}. За целта ще подобрим горната оценка за минималния прост делител на по-малките от числата A, а за най-големите ще извършим директна проверка.

Подредени по големина в низходящ ред, числата, които се получават по описания начин (прости или съставни), са: $a_{1}=1+8!, a_{2}=8!, a_{3}=1+2+3.4 \cdots .8=3+\frac{8!}{2}$, $a_{4}=1.2+3.4 \cdots .8=2+\frac{8!}{2}, a_{5}=1+2.3+4 \cdots .8=7+\frac{8!}{6}, a_{6}=1.2 .3+4 . \cdots .8=a_{7}=$ $1+2+3+4 . \cdots .8=6+\frac{8!}{6}, a_{8}=1.2+3+4 . \cdots .8=5+\frac{8!}{6}, a_{9}=1+2.3 . \cdots .7+8=9+\frac{8!}{8}$, $a_{10}=7!+8=8+\frac{8!}{8}, a_{11}=1+2+3,4 \cdots .7+8=11+\frac{7!}{2}=11+\frac{8!}{16}$ и т.н. Тъй като $\sqrt{a_{11}}=\sqrt{2531}<51$ (всъщност 2531 е просто число), числото p_{8} не може да се получи от a_{11} или от по-малко от него число. Остава да видим, че $a_{2}, a_{4}, a_{6}=a_{7}$ и a_{10} са четни (т.е. най-малкият им прост делител е 2), a_{3} и a_{9} се делят на $3, a_{5}$ се дели на 7 и a_{8} се дели на 5 (т.е. най-малките им прости делители са съответно 3,7 и 5).
Задача 9.4. Нека n е естествено число. Естествените числа от 1 до n^{2} са разположени в клетките на таблица $n \times n$ по такъв начин, че всеки две последователни числа са разположени в две клетки, които имат обща страна. Да се докаже, че не е възможно сумите на числата във всеки ред и всеки стълб да са равни помежду си.

Решение. Да разгледаме „рамката", съставена от тези $4 n-4$ клетки, които имат обща страна с границата на таблицата. Да подредим числата в тези клетки по големина: $a_{1}<a_{2}<\cdots<a_{4 n-4}$. Ще докажем с индукция по k, че за всяко $k \leq 4 n-4$ клетките, съдържащи числата $a_{1}, a_{2}, \ldots, a_{k}$, образуват един непрекъснат сегмент от съседни клетки по дължината на рамката.

При $k=1$ твърдението е очевидно вярно. Да допуснем, че то е вярно за $k=m$ и да разгледаме положението на клетката, съдържаща числото a_{m+1}. Тя няма да образува един непрекъснат сегмент с клетките $a_{1}, a_{2}, \ldots, a_{m}$ тогава и само тогава, когато съществуват две квадратчета A и B от рамката, които се намират „между" a_{m+1} и двата края на сегмента, образуван от $a_{1}, a_{2}, \ldots, a_{m}$. Да нарисуваме начупената

линия, свързваща центровете на клетките с последователни числа, водеща от a_{m} до a_{m+1}. Ясно е, че тази линия разделя шахматната дъска на две части, едната от които съдържа клетката A, а другата - клетката B. Но при това няма никакъв начин, щом продължим номерацията от a_{m+1} нататък в едната от тези две части, да стигнем след това до което и да е поле от другата - за целта би трябвало да номерираме два пъти някое от полетата по дължината на разделителната линия! Достигнахме до противоречие и с това твърдението е доказано.

Да разгледаме сегмента, образуван от клетките, съдържащи числата $a_{1}, \ldots, a_{2 n-2}$ (тоест, първата половина). Лесно се вижда, че този сегмент трябва да „покрива" една от крайните линии (ред или стълб) изцяло, и да не съдържа нито една клетка от противоположната крайна линия. Но тогава всяко число в непокритата линия ще бъде строго по-голямо от всяко число в покритата такава и сумите в тези две линии няма как да бъдат равни!

Забележка. Не е трудно да се види, че при нечетно n сумите в съседни редове (стълбове) са с различна четност.

