Кратки решения на задачите

Задача 10.1. Да се намерят стойностите на реалния параметър a, за които корените x_{1}, x_{2} на уравнението

$$
x^{2}-2 a x+a+2=0
$$

са реални неотрицателни числа и $\sqrt{x_{1}}+\sqrt{x_{2}} \leq 2 \sqrt{5}$.
Решение. Корените x_{1}, x_{2} са реални и неотрицателни когато $D=4\left(a^{2}-a-2\right) \geq 0$ и $x_{1}+x_{2}=2 a \geq 0, x_{1} x_{2}=a+2 \geq 0$. Това дава $a \geq 2$. Сега

$$
\sqrt{x_{1}}+\sqrt{x_{2}} \leq 2 \sqrt{5} \Leftrightarrow x_{1}+x_{2}+2 \sqrt{x_{1} x_{2}} \leq 20 \Leftrightarrow \sqrt{a+2} \leq 10-a .
$$

При $a>10$ това неравенство няма решение, а при $a \in[2,10]$ то е равносилно с $a+2 \leq(10-a)^{2}$, т.е. $a^{2}-21 a+98 \geq 0$. Оттук получаваме $a \in(-\infty, 7] \cup[14,+\infty)$ и предвид $a \in[2,10]$ търсените стойности на параметъра са $a \in[2,7]$.

Задача 10.2. Даден е остроъгълен $\triangle A B C(A C<B C)$. Нека M е средата на страната $A B$, а O и O_{1} са центровете на описаните окръжности за $\triangle A B C$ и $\triangle A M C$. Да се пресметне $S_{A O O_{1}}: S_{A B C}$, ако $\Varangle B A C=60^{\circ}$.
Решение. Нека R е радиусът на описаната около $\triangle A B C$ окръжност, $\Varangle A B C=\beta$ и N е средата на страната $A C$. Тогава $O N \perp A C, O_{1} \in O N$ и $\Varangle A O N=\frac{1}{2} \Varangle A O C=\beta$ (от $A C<B C$ следва $\Varangle A M C<90^{\circ}$). Нека $\Varangle O_{1} A O=\varphi$. Имаме

$$
\Varangle A M C=\frac{1}{2} \Varangle A O_{1} C=\Varangle A O_{1} N=\beta+\varphi .
$$

Но $\Varangle A M C=\beta+\Varangle B C M$ и оттук $\Varangle B C M=\varphi$. Следователно $\triangle A O O_{1} \sim \triangle C B M$ и тогава $S_{A O O_{1}}: S_{C B M}=(A O: B C)^{2}=(R: B C)^{2}$.

Ако P е средата на $B C$, то $\Varangle B P O=90^{\circ}, \Varangle B O P=\Varangle B A C=60^{\circ}$ и и $\sin 60^{\circ}=\frac{B C / 2}{R}$, откъдето $\frac{R}{B C}=\frac{1}{\sqrt{3}}$. Така $S_{A O O_{1}}: S_{C B M}=\frac{1}{3}$ и (понеже $S_{C B M}=\frac{1}{2} S_{A B C}$) намираме $S_{A O O_{1}}: S_{A B C}=1: 6$.

Задача 10.3. Дадена е „шахматна" дъска с размери $m \times n$. Път в дъската наричаме всяка редица от клетки $A_{0}, A_{1}, \ldots, A_{n}$, такава че за всяко $i=0, \ldots, n-1$ клетката A_{i+1} е достижима от A_{i} с един ход на топа. Броят n на ходовете, с които достигаме A_{n} от A_{0} наричаме дължина на пътя $A_{0}, A_{1}, \ldots, A_{n}$. Разстояние между две клетки A и B наричаме дължината на най-късия път с начало A и край B. Едно множество M от клетки наричаме добро, ако всяка клетка от дъската лежи върху най-къс път, започващ в клетка от M и свършващ в клетка от M. Да се определи минималният брой клетки в добро множество.
Решение. Да означим разстоянието между клетките A и B с $d(A, B)$. Очевидно

$$
d(A, B)= \begin{cases}1, & \text { ако клетките } A \text { и } B \text { са в една линия, } \\ 2, & \text { ако клетките } A \text { и } B \text { са в различни линии. }\end{cases}
$$

Нека M е добро множество. Ще докажем, че то съдържа клетки от всяка линия (ред или стълб) на дъската. Да допуснем противното - нека например m-тият ред не съдържа клетки от M. Прозволна клетка C от този ред лежи върху най-къс път от A до $B, A, B \in M$. Съществуват две възможности:

1) $d(A, C)=d(B, C)=1$. Тогава A, B, C са в една линия и $d(A, B)=1$. От друга страна $d(A, B)=d(A, C)+d(C, B)=2$, противоречие.
2) $d(A, C)=2$ или $d(B, C)=2$ (или и двете). Тогава $d(A, B)=d(A, C)+d(C, B) \geq 3$, отново противоречие с факта, че най-късите пътища са с дължина 1 или 2.

От доказаното следва, че броят на клетките в M е поне $\max \{m, n\}$. Ще построим добро множество с такъв брой клетки. Нека без ограничение на общността $m \leq n$. Да означим с (i, j) клетката, намираща се в i-тия ред и j-тия стълб на дъската. Лесно се проверява, че множеството

$$
M=\{(i, i) \mid i=1, \ldots, m\} \cup\{(m, j) \mid j=m+1, \ldots, n\}
$$

е добро.
Задача 10.4. За естествено число $n>1$ разглеждаме всички двойки естествени числа a и b, за които $1 \leq a<b \leq n$ и $a+b>n$. Означаваме с $f(n)$ броя на двойките, такива че a дели b и с $g(n)$ - броя на двойките, такива че a и b са взаимно прости. Да се намерят всички $n>2$, за които

$$
g(n)-g(n-1)=f(n)
$$

Решение. Нека a дели b и $b=a q, q \in \mathbb{N}$. Условията $1 \leq a<b \leq n$ и $a+b>n$ приемат вида $q>1, \frac{n}{a}-1<q \leq \frac{n}{a}$. Ако $a>\frac{n}{2}$, то $q \leq \frac{n}{a}<2$ и няма такова q. За всяко $a \leq \frac{n}{2}$ има единствено цяло $q \in\left(\frac{n}{a}-1, \frac{n}{a}\right]$ (а именно $q=\left[\frac{n}{a}\right]$) и за него $q>\frac{n}{a}-1 \geq 1$, т.е. $q>1$. Следователно броят на такива двойки (a, b) е равен на броя на целите числа a с $1 \leq a \leq \frac{n}{2}$, т.е. $f(n)=\left[\frac{n}{2}\right]$.

Нека $M_{n}, n \geq 3$, е множеството на двойките (a, b), такива че a и b са взаимно прости. Лесно се вижда, че $(a, b) \in M_{n}$, но $(a, b) \notin M_{n-1}$ точно когато $b=n, 1 \leq a<n$ и a е взаимно просто с n. Броят на тези двойки е равен на $\varphi(n)$. Не е трудно да се съобрази, че $(a, b) \in M_{n-1}$, но $(a, b) \notin M_{n}$ точно когато $a+b=n$, т.е. $b=n-a$ и освен това $a<n-a$ и a е взаимно просто с $n-a$ или, еквивалентно, $1 \leq a<\frac{n}{2}$ и a е взаимно просто с n. Броят на тези двойки е равен на $\frac{\varphi(n)}{2}$. Следователно

$$
g(n)-g(n-1)=\varphi(n)-\frac{\varphi(n)}{2}=\frac{\varphi(n)}{2}
$$

Сега равенството $g(n)-g(n-1)=f(n)$ приема вида $\frac{\varphi(n)}{2}=\left[\frac{n}{2}\right]$. Ако 2 дели n, то дава $\varphi(n)=n$, което е невъзможно за $n>1$, а ако 2 не дели n е равносилно с $\varphi(n)=n-1$ и е изпълнено точно когато n е просто число.

Окончателно, търсените числа са всички прости числа $n>2$.

