Кратки решения на задачите

Задача 10.1. Да се намерят стойностите на реалния параметър a, за които корените x_1, x_2 на уравнението

$$x^2 - 2ax + a + 2 = 0$$

са реални неотрицателни числа и $\sqrt{x_1} + \sqrt{x_2} \le 2\sqrt{5}$.

Решение. Корените x_1, x_2 са реални и неотрицателни когато $D = 4(a^2 - a - 2) \ge 0$ и $x_1 + x_2 = 2a \ge 0, x_1x_2 = a + 2 \ge 0$. Това дава $a \ge 2$. Сега

$$\sqrt{x_1} + \sqrt{x_2} \le 2\sqrt{5} \Leftrightarrow x_1 + x_2 + 2\sqrt{x_1x_2} \le 20 \Leftrightarrow \sqrt{a+2} \le 10 - a.$$

При a>10 това неравенство няма решение, а при $a\in[2,10]$ то е равносилно с $a+2\le(10-a)^2$, т.е. $a^2-21a+98\ge0$. Оттук получаваме $a\in(-\infty,7]\cup[14,+\infty)$ и предвид $a\in[2,10]$ търсените стойности на параметъра са $a\in[2,7]$.

Задача 10.2. Даден е остроъгълен $\triangle ABC$ (AC < BC). Нека M е средата на страната AB, а O и O_1 са центровете на описаните окръжности за $\triangle ABC$ и $\triangle AMC$. Да се пресметне $S_{AOO_1}: S_{ABC}$, ако $\not > BAC = 60^\circ$.

Решение. Нека R е радиусът на описаната около $\triangle ABC$ окръжност, $\not ABC = \beta$ и N е средата на страната AC. Тогава $ON \perp AC$, $O_1 \in ON$ и $\not AON = \frac{1}{2} \not AOC = \beta$ (от AC < BC следва $\not AMC < 90^\circ$). Нека $\not AOC = \varphi$. Имаме

Но $\ \ AMC = \beta + \ \ BCM$ и оттук $\ \ BCM = \varphi$. Следователно $\triangle AOO_1 \sim \triangle CBM$ и тогава $S_{AOO_1}: S_{CBM} = (AO:BC)^2 = (R:BC)^2$.

Ако P е средата на BC, то $\not \subset BPO = 90^\circ$, $\not \subset BOP = \not \subset BAC = 60^\circ$ и $\sin 60^\circ = \frac{BC/2}{R}$, откъдето $\frac{R}{BC} = \frac{1}{\sqrt{3}}$. Така $S_{AOO_1}: S_{CBM} = \frac{1}{3}$ и (понеже $S_{CBM} = \frac{1}{2}S_{ABC}$) намираме $S_{AOO_1}: S_{ABC} = 1:6$.

Задача 10.3. Дадена е "шахматна" дъска с размери $m \times n$. Път в дъската наричаме всяка редица от клетки A_0, A_1, \ldots, A_n , такава че за всяко $i=0,\ldots,n-1$ клетката A_{i+1} е достижима от A_i с един ход на топа. Броят n на ходовете, с които достигаме A_n от A_0 наричаме дължина на пътя A_0, A_1, \ldots, A_n . Разстояние между две клетки A и B наричаме дължината на най-късия път с начало A и край B. Едно множество M от клетки наричаме dobpo, ако всяка клетка от дъската лежи върху най-къс път, започващ в клетка от M и свършващ в клетка от M. Да се определи минималният брой клетки в добро множество.

Решение. Да означим разстоянието между клетките A и B с d(A,B). Очевидно

$$d(A,B)=\left\{egin{array}{ll} 1, & ext{ ако клетките } A$$
 и B са в една линия, $2, & ext{ ако клетките } A$ и B са в различни линии.

Нека M е добро множество. Ще докажем, че то съдържа клетки от всяка линия (ред или стълб) на дъската. Да допуснем противното – нека например m-тият ред не съдържа клетки от M. Прозволна клетка C от този ред лежи върху най-къс път от A до B, A, $B \in M$. Съществуват две възможности:

- 1) d(A,C) = d(B,C) = 1. Тогава A,B,C са в една линия и d(A,B) = 1. От друга страна d(A,B) = d(A,C) + d(C,B) = 2, противоречие.
- 2) d(A,C)=2 или d(B,C)=2 (или и двете). Тогава $d(A,B)=d(A,C)+d(C,B)\geq 3$, отново противоречие с факта, че най-късите пътища са с дължина 1 или 2.

От доказаното следва, че броят на клетките в M е поне $\max\{m,n\}$. Ще построим добро множество с такъв брой клетки. Нека без ограничение на общността $m \leq n$. Да означим с (i,j) клетката, намираща се в i-тия ред и j-тия стълб на дъската. Лесно се проверява, че множеството

$$M = \{(i,i) \mid i = 1, \dots, m\} \cup \{(m,j) \mid j = m+1, \dots, n\}$$

е добро.

Задача 10.4. За естествено число n>1 разглеждаме всички двойки естествени числа a и b, за които $1\leq a< b\leq n$ и a+b>n. Означаваме с f(n) броя на двойките, такива че a дели b и с g(n) – броя на двойките, такива че a и b са взаимно прости. Да се намерят всички n>2, за които

$$g(n) - g(n-1) = f(n).$$

Решение. Нека a дели b и $b=aq, q\in\mathbb{N}$. Условията $1\leq a< b\leq n$ и a+b>n приемат вида $q>1, \frac{n}{a}-1< q\leq \frac{n}{a}$. Ако $a>\frac{n}{2}$, то $q\leq \frac{n}{a}<2$ и няма такова q. За всяко $a\leq \frac{n}{2}$ има единствено цяло $q\in\left(\frac{n}{a}-1,\frac{n}{a}\right]$ (а именно $q=\left[\frac{n}{a}\right]$) и за него $q>\frac{n}{a}-1\geq 1$, т.е. q>1. Следователно броят на такива двойки (a,b) е равен на броя на целите числа a с $1\leq a\leq \frac{n}{2}$, т.е. $f(n)=\left[\frac{n}{2}\right]$.

Нека $M_n,\ n\geq 3$, е множеството на двойките (a,b), такива че a и b са взаимно прости. Лесно се вижда, че $(a,b)\in M_n$, но $(a,b)\not\in M_{n-1}$ точно когато $b=n,1\leq a< n$ и a е взаимно просто с a. Броят на тези двойки е равен на $\varphi(n)$. Не е трудно да се съобрази, че $(a,b)\in M_{n-1}$, но $(a,b)\not\in M_n$ точно когато a+b=n, т.е. b=n-a и освен това a< n-a и a е взаимно просто с n-a или, еквивалентно, $1\leq a<\frac{n}{2}$ и a е взаимно просто с n. Броят на тези двойки е равен на $\frac{\varphi(n)}{2}$. Следователно

$$g(n)-g(n-1)=arphi(n)-rac{arphi(n)}{2}=rac{arphi(n)}{2}.$$

Сега равенството g(n)-g(n-1)=f(n) приема вида $\frac{\varphi(n)}{2}=\left[\frac{n}{2}\right]$. Ако 2 дели n, то дава $\varphi(n)=n$, което е невъзможно за n>1, а ако 2 не дели n е равносилно с $\varphi(n)=n-1$ и е изпълнено точно когато n е просто число.

Окончателно, търсените числа са всички прости числа n > 2.