Примерни критерии за оценяване 12 клас:

1 задача
а) За намиране на $f^{\prime}(x)=2 x\left(1-\frac{1}{\left(x^{2}+1\right)^{2}}\right) \quad$ (0,5 т.)

За намиране на корена на уравнението $f^{\prime}(x)=0, \mathrm{x}=0$ (1 т.)
За определяне на интервалите на растене и намаляване: $(-\infty ; 0)$ намалява и $(0,+\infty)$ расте
(0,5 т.)
За определяне вида на екстремума в точка $x=0$ - минимум (0,5 т.)
За оттовор: $f(0)=2$ локален минимум (0,5 т.)
б) Разглеждаме $g(x)=\sqrt{1-x}+\sqrt{1+x}$ и $f(x)=\frac{x^{4}+2 x^{2}+2}{x^{2}+1}(\mathbf{0 , 5}$ т.)

$$
g(x)=\frac{1}{2 \sqrt{1+x}}-\frac{1}{2 \sqrt{1-x}}(0,5 \mathbf{~} .)
$$

За намиране на корените на $g^{\prime}(x)=0, \mathrm{x}=0 \quad(\mathbf{0}, 5$ т.)
За определяне $g(0)=2-$ най-голяма стойност (1 т.)
За неравенството $\mathrm{g}(\mathrm{x})<=2<=\mathrm{f}(\mathrm{x}) \quad$ (1 т.)
За отговор $\mathrm{x}=0$, единствено решение ($\mathbf{0 , 5}$ т.)
2 задача
За въвеждане на ьгъл $\mathrm{BAC}=x$ и изразяване на ыъл $\mathrm{ABC}=180-\gamma-\mathrm{x}$
(1 т.)
От синусова теорема: $\mathrm{AB}=2 . \mathrm{R} \cdot \sin \gamma, \mathrm{BC}=2 . R \cdot \sin \mathrm{x}$ и $\mathrm{AC}=2 \cdot R \cdot \sin (\gamma+\mathrm{x})$ (1 т.)
$P_{A B C}=2 . R .(\sin x+\sin \gamma+\sin (\gamma+x)) \quad(0,5$ т.)
За разглеждане на функцията $\mathrm{P}(\mathrm{x})=\sin \mathrm{x}+\sin \gamma+\sin (\gamma+\mathrm{x}) \quad$ (0,5 т.)
За намиране на $P^{\prime}(x)=\cos x+\cos (\gamma+x)(0,5$ т. $)$
За намиране на корена на уравнението $\mathrm{P}^{\prime}(\mathrm{x})=0, x=90-\frac{\gamma}{2} \quad$ (1 т.)
За определяне на $x=90-\frac{\gamma}{2}$ точка на максимум (1 т.)
Триъгълник ABC е равнобедрен ($\mathbf{0 , 5} \mathbf{5}$.)
За изразяване на $P_{M A X X}=4 . R \cdot \cos \frac{\gamma}{2}\left(1+\sin \frac{\gamma}{2}\right)$ (1 т.)
3 задача
a) Нека проекцията на т.М в равнината ABC е т.H.

За доказателство, че Н е ортоцентьр на $\triangle \mathrm{ABC}$
($0,5 \mathrm{~T}$)
За определяне на $<\alpha=<\mathrm{HA}_{1} \mathrm{M}$ (A_{1} принадлежи на $\left.\mathrm{BC}, \mathrm{A}_{1}=\mathrm{AH} \cap \mathrm{BC}\right)(\mathbf{0 , 5}$ т.)
Условието $\frac{S_{1}}{S}=\cos \alpha$ е еквивалентно на $\frac{B C \cdot M A_{1}}{B C \cdot A A_{1}}=\cos \alpha$ (1 т.)
За доказателство, че АМ е перпендикулярна на MA_{1} (0,5 т.)
За извода. че $\frac{M A_{1}}{A A_{1}}=\cos \alpha$ (от $\Delta \mathrm{CMC}_{1}-$ правоъгълен $)(\mathbf{0 , 5}$ т.)
б) Условието $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ е еквивалентно на $\frac{S_{1}^{2}}{S^{2}}+\frac{S_{2}^{2}}{S^{2}}+\frac{S_{3}^{2}}{S^{2}}=1$ ($\mathbf{0 , 5}$ т.)

Проекцията на $\triangle \mathrm{ABM}$ в равнината ABC е $\triangle \mathrm{ABH} \quad$ ($\mathbf{0 , 5}$ т.)
$\mathrm{S}_{\mathrm{ABH}}=\mathrm{S}_{3} . \cos \gamma(1$ т.)
Аналогично $\mathrm{S}_{\mathrm{BHC}}=\mathrm{S}_{1} \cdot \cos \alpha$ и $\mathrm{S}_{\mathrm{AHC}}=\mathrm{S}_{2} \cdot \cos \beta$.
$\mathrm{S}_{\mathrm{BHC}}+\mathrm{S}_{\mathrm{AHC}}+\mathrm{S}_{\mathrm{BHA}}=\mathrm{S} \Rightarrow \mathrm{S}=\mathrm{S} 1 \cdot \cos \alpha+\mathrm{S}_{2} \cdot \cos \beta+\mathrm{S}_{3} \cdot \cos \gamma \quad$ (1 т.)
$\Rightarrow 1=\frac{S_{1}}{S} \cos \alpha+\frac{S_{2}}{S} \cos \beta+\frac{S_{3}}{S} \cos \gamma \Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ (1 т.)
$S_{A_{1} B_{1} C_{1}}=16 R^{2} \cdot \sin \gamma \cdot \cos \gamma \cdot \sin \beta \cdot \cos \beta \cdot \sin \alpha \cdot \cos \alpha \quad(0,5 \mathrm{~T}$.
$S_{A B C}=\frac{A B \cdot B C \cdot A C}{4 R}=\frac{2 R \cdot \sin \alpha \cdot 2 R \sin \beta \cdot 2 R \sin \gamma}{4 R} \quad(\mathbf{0}, 5$ т.)
$S_{A B C}=2 R^{2} \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma \Rightarrow S_{A_{1} B_{1} C_{1}}=8 \cdot S_{A B C} \cos \alpha \cdot \cos \beta \cdot \cos \gamma(\mathbf{0 , 5}$ т.)

3 задача:
a) $\mathbf{a}_{\mathrm{n}}<1$ за всяко n

Ще използваме математическа индукция. (0,5 т.)
$a_{1}=0.3 a_{2}=0+1 \Rightarrow a_{2}=1 / 3<1$. Нека за a_{k} е вярно, че $a_{k}<1$, ще докажем, че $a_{k+1}<1(0,5$ r.)
$3 a_{k+1}=a_{k}+\sqrt{3 a_{k}^{2}+1} \Rightarrow a_{k+1}=\frac{a_{k}+\sqrt{3 a_{k}^{2}+1}}{3}$. Це докажем, че $\frac{a_{k}+\sqrt{3 a_{k}^{2}+1}}{3}<1$ (1 т.)
$a_{k}<1$ от индукционното предположение, $\sqrt{3 a_{k}^{2}+1}<\sqrt{3.1+1}<2$
$\Rightarrow a_{k}+\sqrt{3 a_{k}^{2}+1}<1+2=3 \Rightarrow a_{k}+\sqrt{3 a_{k}^{2}+1}<3 \Rightarrow \frac{a_{k}+\sqrt{3 a_{k}^{2}+1}}{3}<1$
б) Ще докажем, че $\left\{a_{n}\right\}$ е монотонна растяща и ограничена отгоре.

Монотонност: $\mathrm{a}_{\mathrm{n}}<\mathrm{a}_{\mathrm{n}-1} \Rightarrow a_{n}+\sqrt{3 a_{n}^{2}+1}<a_{n+1}+\sqrt{3 a_{n+1}^{2}+1} \quad$ ($\mathbf{1 , 5}$ т.)
Ще използваме мат. индукция. $\mathrm{a} 1<\mathrm{a} 2$, нека $\mathrm{a}_{\mathrm{k}}<\mathrm{a}_{k+1}$. Ще докажем, че $\mathrm{a}_{\mathrm{k}+1}<\mathrm{a}_{\mathrm{k}+2}$.

$$
3 a_{k+2}=a_{k+1}+\sqrt{3 a_{k+1}^{2}+1}>a_{k}+\sqrt{3 a_{k}^{2}+1}=3 a_{k+1} \Rightarrow a_{k+2}>a_{k+1} \cdot(\mathbf{1 , 5} \mathbf{T})
$$

От подточка a) следва, че редицата е ограничена отгоре ($\mathrm{a}_{\mathrm{n}}<1$ за всяко $\mathrm{n}>1$), с което доказателството е извършено. (1 т.)

