Примерни критерии за оценяване 12 клас:

1 задача

a) За намиране на
$$f'(x) = 2x \left(1 - \frac{1}{(x^2 + 1)^2}\right)$$
 (0,5 т.)

За намиране на корена на уравнението f'(x) = 0, x=0 (1 т.)

За определяне на интервалите на растене и намаляване: $(-\infty;0)$ намалява и $(0,+\infty)$ расте

(0,5 T.)

За определяне вида на екстремума в точка х=0 - минимум (0,5 т.)

За отговор: f(0)=2 локален минимум (0,5 т.)

б) Разглеждаме
$$g(x) = \sqrt{1-x} + \sqrt{1+x}$$
 и $f(x) = \frac{x^4 + 2x^2 + 2}{x^2 + 1}$ (0,5 т.)

$$g'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}}$$
 (0,5 T.)

За намиране на корените на g'(x) = 0, x=0 (0,5 т.)

За определяне g(0)=2 – най-голяма стойност (1 т.)

За неравенството g(x) <= 2 <= f(x) (1 т.)

За отговор х=0, единствено решение (0,5 т.)

2 задача

За въвеждане на ъгъл ВАС=х и изразяване на ъгъл АВС=180-ү-х (1 т.)

От синусова теорема: AB=2.R.sin γ , BC=2.R.sin x и AC=2.R.sin $(\gamma+x)$ (1 т.)

 $P_{ABC}=2.R.(\sin x+\sin y+\sin (y+x))$ (0,5 T.)

За разглеждане на функцията $P(x) = \sin x + \sin \gamma + \sin (\gamma + x)$ (0,5 т.)

За намиране на P'(x)= $\cos x + \cos(\gamma + x)$ (0,5 т.)

За намиране на корена на уравнението P'(x)=0, $x = 90 - \frac{7}{2}$ (1 т.)

За определяне на $x = 90 - \frac{\gamma}{2}$ точка на максимум (1 т.)

Триъгълник АВС е равнобедрен (0,5 т.)

За изразяване на $P_{MAX} = 4.R.\cos\frac{\gamma}{2}(1+\sin\frac{\gamma}{2})$ (1 т.)

3 задача

а) Нека проекцията на т.М в равнината АВС е т.Н.

За доказателство, че Н е ортоцентър на ДАВС (0,5 т.)

За определяне на < α =<HA₁M (A₁ принадлежи на BC, A₁ =AH∩BC) (0,5 т.)

Условието
$$\frac{S_1}{S} = \cos \alpha$$
 е еквивалентно на $\frac{BC.MA_1}{BC.AA_1} = \cos \alpha$ (1 т.)

За доказателство, че АМ е перпендикулярна на МА₁ (0,5 т.)

За извода, че
$$\frac{MA_1}{AA_1} = \cos \alpha$$
 (от ΔCMC_1 – правоъгълен) (0,5 т.)

б) Условието
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
 е еквивалентно на $\frac{S_1^2}{S^2} + \frac{S_2^2}{S^2} + \frac{S_3^2}{S^2} = 1$ (0,5 т.)

Проекцията на $\triangle ABM$ в равнината ABC е $\triangle ABH$ (0,5 т.)

 $S_{ABH}=S_3.\cos\gamma$ (1 T.)

Аналогично $S_{BHC}=S_1.\cos\alpha$ и $S_{AHC}=S_2.\cos\beta$.

$$S_{BHC} + S_{AHC} + S_{BHA} = S => S = S1.cos\alpha + S_2.cos\beta + S_3.cos\gamma$$
 (1 t.)

=>
$$1 = \frac{S_1}{S} \cos \alpha + \frac{S_2}{S} \cos \beta + \frac{S_3}{S} \cos \gamma => \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
 (1 T.)

$$S_{ABC} = \frac{16R^2 \cdot \sin \gamma \cdot \cos \gamma \cdot \sin \beta \cdot \cos \beta \cdot \sin \alpha \cdot \cos \alpha}{4R} = \frac{2R \cdot \sin \alpha \cdot 2R \sin \beta \cdot 2R \sin \gamma}{4R}$$
 (0,5 t.)

$$S_{ABC} = \frac{AB \cdot BC \cdot AC}{4R} = \frac{2R \cdot \sin \alpha \cdot 2R \sin \beta \cdot 2R \sin \gamma}{4R}$$
 (0,5 t.)

$$S_{ABC} = 2R^2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma \implies S_{ABC} \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma$$
 (0,5 t.)

3 задача:

а) a_n<1 за всяко n

Ще използваме математическа индукция. (0,5 т.)

 $a_1=0$. $3a_2=0+1=>a_2=1/3<1$. Нека за a_k е вярно, че $a_k<1$, ще докажем, че $a_{k+1}<1$ (0,5 т.)

$$3a_{k+1}=a_k+\sqrt{3a_k^2+1} \implies a_{k+1}=\frac{a_k+\sqrt{3a_k^2+1}}{3}$$
. Ще докажем, че $\frac{a_k+\sqrt{3a_k^2+1}}{3}<1$ (1 т.)

 $a_k < 1$ от индукционното предположение, $\sqrt{3a_k^2 + 1} < \sqrt{3.1 + 1} < 2$

$$=> a_k + \sqrt{3a_k^2 + 1} < 1 + 2 = 3 \Rightarrow a_k + \sqrt{3a_k^2 + 1} < 3 \Rightarrow \frac{a_k + \sqrt{3a_k^2 + 1}}{3} < 1 \quad (1 \text{ T.})$$

б) Ще докажем, че {a_n} е монотонна растяща и ограничена отгоре.

Монотонност:
$$a_n < a_{n-1} = a_n + \sqrt{3a_n^2 + 1} < a_{n+1} + \sqrt{3a_{n+1}^2 + 1}$$
 (1,5 т.)

Ще използваме мат. индукция. a1<a2, нека $a_k < a_{k+1}$. Ще докажем, че $a_{k+1} < a_{k+2}$.

$$3a_{k+2} = a_{k+1} + \sqrt{3a_{k+1}^2 + 1} > a_k + \sqrt{3a_k^2 + 1} = 3a_{k+1} \implies a_{k+2} > a_{k+1}$$
. (1,5 T.)

От подточка а) следва, че редицата е ограничена отгоре $(a_n < 1$ за всяко n > 1), с което доказателството е извършено. (1 т.)