КРАТКИ РЕШЕНИЯ И УКАЗАНИЯ НА ТЕМАТА ЗА 12 КЛАС

1 зад.
Системата се свежда до уравнението $x^{2}-(c-1) x+c^{2}-7 c+14=0$.
1T.
За да има реални решения системата, е достатъчно квадратното уравнение да има реални корени, т.е. $D \geq 0$, т.е. $D=-3 c^{2}+26 c-55 \geq 0$
17.
$c \in\left[\frac{11}{3} ; 5\right]$
1T.
Образува се $F(\mathrm{c})=x^{2}+y^{2}=(c-1)^{2}-2\left(c^{2}-7 c+14\right)=-\mathrm{c}^{2}+12 c-27$
2T.
Установява се, че $F(c)$ е растяща за $с \in\left[\frac{11}{3} ; 5\right]$.
1T.
Следователно при $\mathrm{c}=5$ функцията приема най- голяма стойност.
1T.

2 зад.а)

Нека $y=\log _{2} x$, за да се реши уравнението $y^{2}-\left(3+\log _{2} 3\right) y+3 \log _{2} 3=0$,

$$
\begin{aligned}
& \text { където } y_{1}=3 \quad \mathrm{y}_{2}=\log _{2} 3 \\
& x_{1}=8, \quad x_{2}=3 \\
& \frac{185+256}{55}=\frac{441}{55}=8 \frac{1}{55}, 2,5 \pi<\frac{441}{55}<3 \pi, \cos \frac{441}{55}<0 \\
& \frac{185+8}{15}=\frac{193}{15}=12 \frac{13}{15}, \quad 4 \pi<\frac{193}{15}<4,5 \pi, \quad \cos \frac{193}{15}>0 \\
& \text { решение е } x_{2}=3 \\
& 1 \text { т. } \\
& 1 \text { т. } \\
& 17 .
\end{aligned}
$$

2 зад. б)

От достатъчното условие за аритметична прогресия и полагането $y=3^{x}+3^{-x}$, където y
≥ 2 се получава уравнението $y^{2}-(2 m+3) y+m^{2}+3 m=0 \quad$ 2т.
Корените му са $y_{1}=m+3$ и $y_{2}=m$
От условията $\quad m+3 \geq 2$ или $m \geq 2$. Следователно $m \geq-1$
1T.

3 зад а)

Съгласно означенията на условието, $\mathrm{O}_{1} O_{3}=R_{1}+R_{3}=5 \frac{\sqrt{3}}{2}$ (S_{1} се допира до S_{3}),
аналогично $\mathrm{O}_{1} O_{2}=R_{1}+R_{2}=\frac{7}{6} \sqrt{3}$ и $\mathrm{O}_{2} O_{3}=R_{2}+R_{3}=\frac{8}{3} \sqrt{3}$. От правоъгълния трапец
$\mathrm{ACO}_{3} O_{1}$ може да се намери страната, че $C A=2 \sqrt{3}, C B=4$ и $A B=2$
Намира се, че $\mathrm{S}_{A B C}=2 \sqrt{3}$.

Ho $\triangle A B C$ е ортогонална проекция на $\triangle O_{1} O_{2} O_{3}$ в равнината, до която се допират трите сфери,следователно е изпълнено $\mathrm{S}_{A B C}=S_{O_{1} O_{2} O_{3}} \cos \angle\left((A B C) ;\left(O_{1} O_{2} O_{3}\right)\right)$

Намира се, че $\mathrm{S}_{\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}}=\sqrt{19}$
1T.
$\cos \angle\left((A B C) ;\left(\mathrm{O}_{1} O_{2} O_{3}\right)\right)=\frac{2 \sqrt{3}}{\sqrt{19}}$
17.

3 зад. б)

$C_{1} A_{1}=(A B C) \cap\left(O_{1} O_{2} O_{3}\right)$. Ако $A_{1} B=y$ и от $\Delta A_{1} B O_{2} \sim \Delta A_{1} C O_{3}$, може да се намери $y=2$,
а там $A_{1} C=6$. Аналогично, ако $A_{1} C=x$ и от $\triangle A C_{1} C \sim \Delta B C_{1} O_{2}$, може да се намери $x=6$.
Откъдето $B C_{1}=8$.
17.

За намирането на $\mathrm{S}_{A_{1} C C_{1}}=\frac{A_{1} C \cdot C C_{1}}{2}=\frac{6 \cdot 4 \sqrt{3}}{2}=12 \sqrt{3}$
1T.

От друга страна $O_{3} C \perp(A B C)$, защото точка C е допирна точка на сферата S_{3} до ($A B C$).
Окончателно за обема $\mathrm{V}_{A_{1} C_{1} C_{3}}=\frac{12 \sqrt{3}}{3} \cdot 2 \sqrt{3}=24$
1T.

