Министерство на образованието и науката Съюз на математиците в България

Зимни математически цъстезания Русе, 1 - 3 февруари 2008 г.

Тема за 9 клас

Задача 1. (6 точки) Нека a е реално число такова, че квадратното уравнение $x^2-x+a=0$ има два различни реални корена x_2 и x_1 . Да се докаже,че $\left|x_1^2-x_2^2\right|=1$ тогава и само тогава, когато $\left|x_1^3-x_2^3\right|=1$.

Задача 2. (6 точки) Точка M е средата на отсечката AB, а точка C е вътрешна за AB и $C \neq M$. В едната полуравнина относно правата AB са построени равнобедрените триъгълници ACK (AK=CK) и BCL (BL=CL), такива че K, C, L и M лежат на една окръжност. Да се докаже, че или $KL \mid AB$ или $KA \perp LB$.

Задача 3. (7 точки) Да се намери най-малкото естестено число n, за което съществуват цели числа $x_1, x_2,....x_n$, такива че $x_1^3 + x_2^3 + + x_n^3 = 2008$.

Задача 4. (7 точки) Равностранен триъгълник ABC е разделен на 100 равностранни триъгълници с дължина на сграната 1 чрез прави, успоредни на страните на триъгълник ABC. Да се намери броя на всички равнобедрени трапеци, получени при разделянето на ABC, с основи, успоредни на една от страните на ABC и бедра, успоредни на другите две страни.

Време за работа 4.5 часа.