<u>ДИМИТРОВДЕНСКО МАТЕМАТИЧЕСКО СЪСТЕЗАНИЕ – ГРАД ВИДИН</u>

22 ОКТОМВРИ 2005 ГОДИНА

10 КЛАС

Задача 1. Да се намери числената стойност на израза

$$A = \frac{x}{y^2 - 1} + \left(\frac{y - x}{y^2 + x^2} - \frac{2xy}{x^3 - x^2y + xy^2 - y^3}\right) \left(1 - \frac{x + y}{y} + \frac{x^2}{y^2}\right), \text{ ако } x \text{ и } y$$
удовлетворяват системата
$$\frac{5}{x^2 + 5xy} + \frac{7}{xy + 5y^2} - \frac{2}{xy} = \frac{10}{x^2y + 5xy^2}.$$

Задача 2. Дадено е квадратното уравнение $(m-2)x^2 - (2m+1)x + m - 1 = 0$.

- а) Намерете стойностите на параметъра m, за които корените на уравнението са реални и различни.
- б) Намерете стойностите на параметъра m, за които корените на уравнението удовлетворяват равенството $x_1^2 + x_2^2 = x_1 x_2^2 + x_1^2 x_2$.
- в) Намерете рационалните стойности на параметъра m, за които корените на уравнението са цели числа.

Задача 3. Около окръжност κ с център O е описан равнобедрен трапец ABCD (AB||CD). Нека M е допирната точка на κ с бедрото BC.

- а) Докажете, че $OM^2 = BM.CM$.
- б) Намерете лицето на трапеца, ако AB = 12 см, CD = 6 см.

Задача 4. Триъгълник ABC е равнобедрен AC = BC < AB, AL е негова ъглополовяща $(L \in BC)$, а MN е средна отсечка $(M \in AC, N \in BC)$. Да се намери периметърът на триъгълник ABC, ако CL : LB = 5 : 8 и PM - PN = 12, където P е пресечната точка на AL и MN.

ВРЕМЕ ЗА РАБОТА З ЧАСА