Общински кръг на LVIII Републиканска олимпиада по математика 15 март 2009 година - София

9. клас

1. Решете уравненията:
а) $3\left(x^{2}-\frac{8}{x}\right):\left(x^{2}+2 x+4\right)=\frac{5 x-15}{x^{2}-x-6}$;

3 точки
б) $\sqrt{5 x^{2}+10 x+1}+x^{2}+2 x=7$.

4 точки

2. Даден е триъгълник $A B C(A C<B C)$. В триъгълника е вписана окръжност с център O , която се допира до страните му $A B, B C$ и $A C$ съответно в точките M, N и P. Ђглополовящата на $\measuredangle A C B$ пресича страната $A B$ в точка L. Ако $M L=1 \mathrm{~cm}, C P=3 \mathrm{~cm}$ и $L N \| A C$, намерете:
a) дължините на страните на $\triangle A B C$;
5 точки
б) отношението $\mathrm{CO}: O L$. 2 точки
3. Дадено е уравнението $m x^{4}-(2 m-1) x^{2}+m-2=0$. Намерете стойностите на параметъра m, за които уравнението:
a) има два различни реални корена; 3 точки
б) има четири различни реални корена x_{1}, x_{2}, x_{3} и x_{4}, за които е изпълнено, че $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=6 x_{1}{ }^{2} x_{2}{ }^{2} x_{3}^{2} x_{4}{ }^{2}$. 4 точки

9. клас

1. Решете уравненията:

a) $3\left(x^{2}-\frac{8}{x}\right):\left(x^{2}+2 x+4\right)=\frac{5 x-15}{x^{2}-x-6}$;

3 точки
б) $\sqrt{5 x^{2}+10 x+1}+x^{2}+2 x=7$.

4 точки
a) Дефиниционното множество на уравнението е $x \neq 0,3,-2$.

0,5 точки
Уравнението е еквивалентно на $\frac{3(x-2)\left(x^{2}+2 x+4\right)}{x\left(x^{2}+2 x+4\right)}=\frac{5(x-3)}{(x-3)(x+2)} \Leftrightarrow \quad 1$ точка
$3 x^{2}-5 x-12=0$. Корените на последното уравнение са $x_{1}=-\frac{4}{3}$ и $x_{2}=3$. 1 точка
3 не е допустима стойност и не е решение. Единствено решение е $x_{1}=-\frac{4}{3}$. 0,5 точки
б) Полагаме $x^{2}+2 x=t$. Уравнението добива вида $\sqrt{5 t+1}=7-t$.

1 точка
След повдигане на квадрат получаваме уравнението $t^{2}-19 t+48=0 \quad 1$ точка с корени $t_{1}=3$ и $t_{2}=16$. Чрез непосредствена проверка се установява, че 3 е решение, а 16 не е решение на ирационалното уравнение $\sqrt{5 t+1}=7-t$.

1 точка
Корените на даденото уравнение намираме от $x^{2}+2 x-3=0$, т.е. $x_{1}=-3, x_{2}=1$. 1 точка
2. Даден е триъгълник $A B C(A C<B C)$. В триъгълника е вписана окръжност с центьр O, която се допира до страните му $A B, B C$ и $A C$ съответно в точките M, N и P. Вглополовящата на $\measuredangle A C B$ пресича страната $A B$ в точка L. Ако $M L=1 \mathrm{~cm}, C P=3 \mathrm{~cm}$ и $L N \| A C$, намерете:
a) дължините на страните на $\triangle A B C$;
б) отношението $\mathrm{CO}: \mathrm{OL}$.
a) От свойство на ъглополовящата и теорема на Талес следва, че $\frac{A L}{L B}=\frac{A C}{B C}=\frac{C N}{B N}$

1 точка
Въведени неизвестните $A M=A P=x$ и $B M=B N=y$ и получена системата $\left\lvert\, \begin{aligned} & \frac{x+1}{y-1}=\frac{x+3}{y+3} \\ & \frac{x+1}{y-1}=\frac{3}{y}\end{aligned} \Leftrightarrow\right.$

2 точки

5 точки

2 точки
$\left|\begin{array}{l}2 x-y+3=0 \\ x y-2 y+3=0\end{array} \Leftrightarrow\right| \begin{aligned} & y=2 x+3 \\ & 2 x^{2}-x-3=0\end{aligned}$.
1 точка
От последното уравнение следва, че $x_{1}=-1$ (не е решение) и $x_{2}=1,5$. Следователно $A B=7,5$ $\mathrm{cm}, B C=9 \mathrm{~cm}, A C=4,5 \mathrm{~cm}$.

1 точка
б) $A O$ е ьглополовяща в $\triangle A C L$.

1 точка
Следователно $\frac{C O}{O L}=\frac{C A}{A L}=\frac{4,5}{2,5}=\frac{9}{5}$.
1 точка
3. Дадено е уравнението $m x^{4}-(2 m-1) x^{2}+m-2=0$. Намерете стойностите на параметьра m, за които уравнението:
a) има два различни реални корена;

3 точки
б) има четири различни реални корена x_{1}, x_{2}, x_{3} и x_{4}, за които е изпълнено, че $x_{1}{ }^{4}+x_{2}{ }^{4}+x_{3}{ }^{4}+x_{4}^{4}=6 x_{1}{ }^{2} x_{2}{ }^{2} x_{3}{ }^{2} x_{4}{ }^{2}$.

4 точки
a) Полагаме $x^{2}=y$ и получаваме уравнението $m y^{2}-(2 m-1) y+m-2=0$.

При $m=0$ уравнението има вида $x^{2}-2=0$ и $x_{1,2}= \pm \sqrt{2}$, т.е. $m=0$ е решение. $\quad 1$ точка
При $D=0$ и $y_{1,2}=-\frac{b}{2 a}>0$, т.е. $m=-\frac{1}{4}$ уравнението има два различни реални корена.
1 точка
При $y_{1} y_{2}<0 \Leftrightarrow \frac{m-2}{m}<0 \Leftrightarrow m \in(0 ; 2)$ уравнението има два различни реални корена.
1 точка
б) Уравнението има четири различни реални корена, ако $\left\lvert\, \begin{aligned} & D>0, m \neq 0 \\ & y_{1} y_{2}>0 \\ & y_{1}+y_{2}>0\end{aligned} \Leftrightarrow\right.$
$m>-\frac{1}{4}$
$\frac{m-2}{m}>0 \Leftrightarrow m \in\left(-\frac{1}{4} ; 0\right) \cup(2 ;+\infty)$.
1 точка
$\frac{2 m-1}{m}>0$
От $x_{1,2}= \pm \sqrt{y_{1}} \quad$ и $x_{3,4}= \pm \sqrt{y_{2}} \quad$ следва, че $x_{1}{ }^{2}=x_{2}^{2}=y_{1} \quad$ и $\quad x_{3}^{2}=x_{4}^{2}=y_{2} \quad$ и $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=6 x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2} \Leftrightarrow 2\left(y_{1}{ }^{2}+y_{2}{ }^{2}\right)=6 y_{1}{ }^{2} y_{2}{ }^{2} \Leftrightarrow y_{1}{ }^{2}+y_{2}{ }^{2}=3 y_{1}{ }^{2} y_{2}{ }^{2} \quad 1$ точка
Следователно $\left(\frac{2 m-1}{m}\right)^{2}-2 \frac{m-2}{m}=3\left(\frac{m-2}{m}\right)^{2}$,
1 точка

Откъдето получаваме $m_{1}=1$ (не е решение) и $m_{2}=11$ (решение)
1 точка.

