Section "Iztok" - UBM

Christmas Competition - 08.12.2007

11-12 grade

Time - 120 minutes

Rules: For each problem from 1 to 60 you receive 1 point and there is only one correct answer. For each problem from 45 to 60 you have to write the correct answer.
Organizing committee wishes a successful work!
Name.
School
City

1. $\frac{\sqrt{10} \sqrt{2}}{\sqrt{15}}=$
(A) $2 / 5$
(B) $\frac{2 \sqrt{5}}{5}$
(C) $\frac{\sqrt{3}}{6}$
(D) $\frac{2 \sqrt{3}}{3}$
(E) $\frac{\sqrt{5}}{3}$
2. What is the relationship between the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ in figure?
(A)Equal
(B)Area $\triangle \mathrm{ABC}=1 / 2$ Area of $\triangle \mathrm{DBC}$
(C)Area of $\triangle A B C>$ Area of $\triangle D B C$
(D)Area of $\triangle \mathrm{ABC}+1=$ Area of $\triangle \mathrm{DBC}$
(E) Area of $\triangle A B C=1 / 3$ Area of $\triangle D B C$
3. If $\mathrm{a} \neq-\mathrm{b}$, then $\frac{a-b}{a+b}-1=$
\qquad
\qquad
(A) 0
(B) $\frac{a-b-1}{a+b}$
(C) $\frac{-2 b}{a+b}$
(D) $\frac{2 a}{a+b}$
(E) $\frac{a^{2}+b^{2}}{a+b}$
4. If the given angles have the measures indicated in figure, what are the measures of x and y ?
(A) $x=100^{\circ}, y=90^{\circ}$
(B) $x=120^{\circ}, y=85^{\circ}$
(C) $x=120^{\circ}, y=90^{\circ}$
(D) $x=110^{\circ}, y=90^{\circ}$
5. If $3+y=a$ and $3-y=a$, then
(A) $a=5, y=2$
(B) $a=1, y=-1$
(C) $a=2, y=-1$
(D) $a=3, y=1$
(E) $a=3, y=0$
6. If 250 quadles $=1$ dorple and 1750 septles $=1$ dorple, how many septles $=1$ quadle?
(A) 3
(B) 7
(C) 17
(D) 30
(E) 70
7. If $\frac{x-1}{x+1}=\frac{2}{3}$ then $x=$
(A) 3
(B) 2
(C) No value possible
(D) 4
(E) 5
8. In figure, if ray OA is perpendicular to line BD and $\angle \mathrm{AOE}$ has degree measure of 15 , then the measure of $\angle \mathrm{COD}$ is
(A) 75
(B) 95
(C) 100
(D) 105
(E) 100
9. If $4^{x / 2}=16$, then $x=$
(A) -2
(B) 1
(C) 2
(D) 4
(E) -4
10. If $\frac{x^{2}-1}{3}=5$ and $y\left(\frac{x^{2}-1}{3}\right)=15$, then $\mathrm{y}=$
(A) 5
(B) 3
(C) $\sqrt{3}$
(D) 15
(E) Cannot be determined
11. $\cos x-\left(\sin \left(90^{\circ}-\mathrm{x}\right)\right)=$
(A) 0
(B) 1
(C) -1
(D) .87
(E) .5
12. In figure, arc $C D$ is a semicircle. $\mathrm{AB} \perp \mathrm{CD}, \mathrm{BC}=3, \mathrm{BD}=4$. Then the length of $\mathrm{AB}=$
(A) 3.46
(B) 4.42
(C) 3
(D) 4
(E) 5
13. If $(b+c)(a b-a c)=b^{2}-c^{2}$, then $a=$
(A) 0
(B) 1
(C) -1
(D) b
(E) c

14. If $\mathrm{x}=2, \mathrm{y}=3$, and $\mathrm{z}=4$, then $\frac{x^{3}+y z^{2}}{-2(2-3 y)}=$
(A) 5
(B) -5.6
(C) -5
(D) 5.6
(E) 4
15. If the radii of the circles in figure are 5 and 3 , the centers are A and B and both $\angle \mathrm{GAF}$ and $\angle \mathrm{DBC}$ are right angles, what is perimeter of $\triangle \mathrm{CEG}$?
(A) 32
(B) 38.63
(C) 30
(D) 27,63
(E) Cannot be determined
16. If ABCD in figure is a parallelogram and is positioned in the coordinate plane so that $\mathrm{A}=(1,1), \mathrm{B}=(4,2)$, and $\mathrm{E}=(3,3)$, then D is

(A) $(-4,-2)$
(B) $(-4,2)$
(C) $(2,4)$
(D) $(2,-4)$
(E) $(-2,-4)$
17. In figure, if $\mathrm{AD}=2$ and $\mathrm{DB}=3$, then the ratio $\frac{\operatorname{area} \triangle A D C}{\operatorname{area} \triangle A B C}$ is
(A) $2 / 3$
(B) $3 / 2$
(C) $2 / 5$
(D) $3 / 5$
(E) $5 / 3$
18. If $f\left(\frac{1}{x}\right)=2 \mathrm{x}$, what is $\mathrm{f}(\mathrm{x})$?
(A) $2 / \mathrm{x}$
(B) $x / 2$
(C) $1 /(2 x)$
(D) 2
(E) Cannot be

determined
19. In figure, $\angle \mathrm{D}$ and $\angle \mathrm{B}$ are right angle, $\mathrm{AD}=\mathrm{AB}, \mathrm{BC}=\mathrm{DC}$, and $\mathrm{AB} \neq \mathrm{BC}$. How many circles can be drawn that contain A, B, and C , but not D ?
(A) None
(B) 1
(C) 2
(D) 3
(E) Infinitely many
20. If $\left(x-\frac{1}{2}\right)\left(x-\frac{3}{2}\right)<0$, then the greatest negative value for x is
(A) -1 (B) $-1 / 2$
(C) $-3 / 2$
(D) 0
(E) No negative value of x will make the inequality true
21. The graphs of which of the following are the same?
I. $y=\frac{1}{2} x+\frac{1}{2}$
II. $y+1=\frac{1}{2}(x+3)$
III. $y-2=\frac{1}{2}(x-3)$
(A) I and II only
(B) None
(C) II and III only
(D) I and III only
(E) I, II, and III
22. In 10 minutes, the number of degrees the hour hand of a clock rotates is
(A) 1
(B) 6
(C) $6 \frac{2}{3}$
(D) 5
(E) 10
23. If $\frac{1}{x}+\frac{1}{\sqrt{x}}=0$, then $x=$
(A) 0
(B) 1
(C) -1
(D) 111
(E) No real value possible
24. $(\sin x)(\cos x)=1$ when $x=$
I. 0
II. $\pi / 4$
III. All real numbers
(A) I only
(B) II. only
(C) I and II only
(D) none
(E) all
25.If $1 / \mathrm{x}<1 / 2$, then
(A) $x>2$
(B) $\mathrm{x}>2$ or $\mathrm{x}<2$
(C) $x>2$ and $x<2$
(D) $\mathrm{x}>2$ or $\mathrm{x}<0$
(E) x is any real number
except zero
25. If $\mathrm{k}+1$ represents a given odd integer, which of the following must also be an odd integer?
(A) $2(\mathrm{k}+1)$
(B) $\mathrm{k}(\mathrm{k}+1)$
(C) $(\mathrm{k}+1)(\mathrm{k}+2)$
(D) $(\mathrm{k}+1)(\mathrm{k}-1)$
(E) $(k+1)^{2}-1$
26. If $\left(a^{2}-3 a\right)(a+3)=0$ then $a=$
(A) $\{3\}$
(B) $\{-3\}$
(C) $\{3,-3\}$
(D) $\{0,3,-3\}$
(E) $\{0,-1,3,-3\}$
27. If the right angles and sides are as marked in figure, the area of trapezoid $A B C D$ is 18 , and $a=2 b$, then $c=$
(A) 4.47
(B) 8.94
(C) 4
(D) 2
(E) Cannot be determined
28. $\operatorname{If}(x)=-1 / x^{3}$ and x takes on successive values from -10 to $-1 / 10$, then
(A) $f(x)$ increases throughout
(B) $f(x)$ decreases throughout
(C) $f(x)$ increases, then decreases

(D) $f(x)$ decreases, then increases

(E) $f(x)$ remains constant throughout
30. If in a $\triangle \mathrm{ABC}, \angle \mathrm{C}$ is a right angle, $\mathrm{BC}=1$, and $\tan \angle \mathrm{B}=\mathrm{p}$, then $\cos \angle \mathrm{A}=$
(A) $\frac{1}{\sqrt{p^{2}+1}}$
(B) $\frac{p}{p+1}$
(C) $\frac{p}{\sqrt{p^{2}+1}}$
(D) $\frac{\sqrt{p^{2}+1}}{p}$
(E) $p^{2}+1$
31. A gold bar with dimensions 2 ' $x 3^{\prime} \times 4^{\prime}$ has all of its faces rectangular. If it is melted and recast into three cubes of equal volumes, what is the length of an edge of each cube?
(A) 1
(B) 2
(C) 3)
(D) 4
(E) 5
32. If $n!/ 2=(n-2)$! Then $n=$
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
33. If $\log x=\frac{1}{2} \log a-\log b$ and $a=4 b^{2}$, then $x=$
(A) 1
(B) 2
(C) 4
(D) 8
(E) 16
34. If p, m, and n are prime numbers, none of which is equal to the other two, what is the greatest common factor of $24 \mathrm{pm}^{2} \mathrm{n}^{2}, 9 \mathrm{pmn}^{2}$, and $36 \mathrm{p}(\mathrm{mn})^{3}$?
(A) 3 pmn
(B) $3 \mathrm{p}^{2} \mathrm{~m}^{2} \mathrm{n}^{2}$
(C) $3 \mathrm{pmn}^{2}$
(D) $3 \mathrm{pmn}^{2} \mathrm{n}^{2}$
(E) $3 \mathrm{pmn}^{3} \mathrm{n}^{3}$
35. If the perpendicular bisector of the segment with endpoints $A(1,2)$ and $B(2,4)$ contains the point $(4, \mathrm{c})$, then the value of c is
(A) 7)
(B) $7 / 4$
(C) -7
(D) 4
(E) -4
36. If $f(x)=1 / x$ and $f[f(x)]=f(x)$, then x is
(A) 1 only
(B) -1 only
(C) 1 or -1
(D) no real number
(E)
any real number

37. If in figure, line $D E$ is parallel to line $A B$, and $C D=3$ while $D A=6$, which of the following must be true?
I. $\triangle \mathrm{CDE} \sim \Delta \mathrm{CAB} \quad$ II. $\frac{\text { Area } \Delta C D E}{\text { Area } \triangle C A B}=\left(\frac{C D}{C A}\right)^{2} \quad$ III. If $\mathrm{AB}=4$, then $\mathrm{DE}=2$
(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I and II only
38. If $x=3 i, y=2 i$, and $z=1+i$, then $x y^{2} z=$
(A) 0
(B) -1
(C) 1-i
(D) $12-12 \mathrm{i}$
(E) $6-6 \mathrm{i}$
39. If $a<b$, then each of the following is true for all a and b EXCEPT
(A) $-\mathrm{a}<|\mathrm{b}|$
(B) $-\mathrm{a}>-\mathrm{b}$
(C) $-b^{2}<a^{2}$
(D) $-a^{2}<b^{2}$
(E) $0>\mathrm{b}-\mathrm{a}$
40. A singer has memorized 12 different songs. If every time he performs he sings any three of these songs, how many different performances can he give?
(A) 4
(B) 12
(C) 110)
(D) 220
(E) 440
41. In figure, the measure of $\angle A O D$ and $\angle B O Y$ is 90 , and the measure of $\angle D O Y$ is between 40 and 50 . What is the range of possible values of the measure of $\angle \mathrm{AOC}$?
(A) 30 to 40
(B) 40 to 50
(C) 50 to 60
(D) 40 to 60
(E) Cannot
be determined
42. If a circle is tangent to be both the x - and y-axis and has a radius of 1 , then its equation
is
(A) $(x-1)^{2}+(y+1)^{2}=1$
(B) $x^{2}+y^{2}=1$
(C) $x^{2}+(y+1)^{2}=1$
(D) $(x+1)^{2}+y^{2}=1$

(E) $(x-1)^{2}+y^{2}=1$

43. If two planes P_{1}, and P_{2}, are parallel, then
(A) Any line in P_{1} is parallel to any line in P_{2}
(B) $\mathrm{AB}=\mathrm{CD}$ whenever A and C are in P_{1} and B and D are in
$P_{2} \quad$ (C) Any line that intersects P_{1} in exactly one point will intersect P_{2} in exactly one point
(D) Any line parallel to P_{1} will intersect $P_{2} \quad$ (E) Any line that intersects P_{1} in more that one point must intersect P_{2} in more than one point
44. If $\tan \frac{y}{2}=\sin \frac{y}{2}$ and $0 \leq \frac{y}{2} \leq \frac{\pi}{2}$, then $\cos \mathrm{y}=$?
(A) 0
(B) 1)
(C) -1
(D) $1 / 2$
(E) $-\sqrt{2} / 2$
45. The number of points in the intersection of the graphs of $y=|x+2|$ and $y=-|x|+2$ is
(A) Infinitely many
(B) A finite but indeterminable number
(C) 3
(D) 2
(E) 0
46. If $\sin x>0$ and $\cos x=-8$, then $\tan x=$
(A) .6
(B) -.6
(C) 1.33
(D) -.75
(E) -1.33
47. If $x=\sqrt{y z}, x>0, y>0$, and $z>0$, then $\log y=$
(A) $\frac{x^{2}}{z}$
(B) $\frac{\log x^{2}}{\log z}$
(C) $\frac{2 \log x}{\log z}$
(D) $2 \log x-\log z$
(E) $2(\log x-\log z)$
48. A parallelogram has an area of 36 square feet and two sides of lengths 6 feet and 9 feet. Which of the following is the sine of an angle of the parallelogram?
(A) $2 / 3$
(B) $3 / 2$
(C) $4 / 9$
(D) $5 / 9$
(E) $-5 / 6$
49. Three cards, Card One, Card Two, and Card Three, are drawn from a desk. One of these is a queen, one an ace, and one a king. One and only one of the following statements is true.
I. Card Two is NOT a queen
II. Card Three IS a queen
III. Card One is NOT an ace

Based on this information, which of the following is true?
(A) Card One is a queen
(B) Card One is an ace
(C) Card Two is a king
(D) Card Three is an ace (E) Card Three is a queen
50. If a cube has an edge of length 10 , then the length of the segment connecting the center of a face of the cube to any vertex not contained in the plane of that face is
(A) $\sqrt{6}$
(B) $5 \sqrt{6}$
(C) $6 \sqrt{5}$
(D) $3 \sqrt{5}$
(E) $10 \sqrt{6}$

1-d; 2-a; 3-c; 4-b; 5-e; 6-b; 7-e; 8-d; 9-d; 10-b; 11-a; 12-a; 13-b; 14-e; 15-d; 16-c; 17-a; 18-a; 19-a; 20-e; 21-e; 22-d; 23-e; 24- ; 25-d; 26-d; 27-d; 28-a; 29-a; 30-c; 31-b; 32-b; 33-b; 34-c; 35-b; 36-e ; 37-e; 38-e; 39-e; 40-d;

